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ABSTRACT: It is thought that, in a consignment of discrete units,
a certain proportion of the units contain illegal material. A sample
of the consignment is to be inspected. Various methods for the de-
termination of the sample size are compared. The consignment will
be considered as a random sample from some super-population of
units, a certain proportion of which contain drugs.

For large consignments, a probability distribution, known as the
beta distribution, for the proportion of the consignment which con-
tains illegal material is obtained. This distribution is based on prior
beliefs about the proportion. Under certain specific conditions the
beta distribution gives the same numerical results as an approach
based on the binomial distribution. The binomial distribution pro-
vides a probability for the number of units in a sample which con-
tain illegal material, conditional on knowing the proportion of the
consignment which contains illegal material. This is in contrast to
the beta distribution which provides probabilities for the proportion
of a consignment which contains illegal material, conditional on
knowing the number of units in the sample which contain illegal ma-
terial. The interpretation when the beta distribution is used is much
more intuitively satisfactory. It is also much more flexible in its abil-
ity to cater for prior beliefs which may vary given the different cir-
cumstances of different crimes.

For small consignments, a distribution, known as the beta-bino-
mial distribution, for the number of units in the consignment which
are found to contain illegal material, is obtained, based on prior be-
liefs about the number of units in the consignment which are thought
to contain illegal material. As with the beta and binomial distribu-
tions for large samples, it is shown that, in certain specific condi-
tions, the beta-binomial and hypergeometric distributions give the
same numerical results. However, the beta-binomial distribution, as
with the beta distribution, has a more intuitively satisfactory inter-
pretation and greater flexibility. The beta and the beta-binomial dis-
tributions provide methods for the determination of the minimum
sample size to be taken from a consignment in order to satisfy a cer-
tain criterion. The criterion requires the specification of a proportion
and a probability.

KEYWORDS: forensic science, drugs, statistics, sampling,
Bayesian inference

Introduction

Consider a population or consignment, which consists of discrete
units, such as individual tablets in a consignment of tablets or indi-
vidual computer disks in a consignment of disks. Each unit may, or
may not, contain something illegal, such as drugs or pornographic
images. It is of interest to an investigating scientist to determine the
proportion of the consignment which contains something illegal.
This may be done exactly (assuming no mistakes are made) by ex-

amination of every unit in the consignment. Such an examination
can be extremely costly. Considerable resources can be saved if in-
formation, sufficient to satisfy the needs of the investigators, may
be gained from examination of a sample from the consignment.
When a sample is considered, uncertainty is introduced when in-
ference is made from the sample to the population, because the
whole population is not inspected. However, this uncertainty may
be quantified probabilistically. It is shown that if two numbers are
specified in advance of the inspection of the consignment, then a
sample size may be specified. The first of these numbers is the min-
imum proportion of units in the consignment which contain some-
thing illegal that the examination is to be designed to find. The sec-
ond is the required probability with which the true proportion of
illegal units exceeds this minimum proportion.

With reasonable assumptions, a probability distribution for the
true proportion of units in the consignment is derived, based on the
scientist’s prior beliefs (i.e., prior to the inspection of individual
units) and the outcome of the inspection of the sample. The prior
beliefs may be based on presumptive tests. For example, the phys-
ical appearance of the suspected illegal material may be similar to
that of other known illegal material from the scientist’s experience.
Alternatively, the results of an initial examination of some of the
material by color spot tests may affect the prior beliefs. It is possi-
ble to choose a function to represent the strength of the scientist’s
prior beliefs. It may be thought inappropriate that the scientist’s
prior beliefs should have any effect on the decision to be made re-
garding the sample size. In such a case, it is possible to choose the
function in such a way that the effect is very small. (It is also pos-
sible to choose the function such that the effect is very large.) It is
not possible for the scientist’s prior beliefs to have no effect on the
analysis. For example, the choice of the model which is used to rep-
resent the uncertainty introduced by the sampling process is a sub-
jective choice. The binomial model described here requires as-
sumptions about independence of the probability for each unit
being illegal and the choice of a constant value for this probability.

The function representing the scientist’s prior beliefs is then
combined with a function which accounts for the observation of the
number of units in the sample which contain something illegal. The
combination of these two functions provides a third function which
represents the probability distribution for the true proportion of il-
legal units in the consignment. It is shown here that this function is
of the same form as the one representing the scientist’s prior be-
liefs. From this so-called posterior distribution (i.e., posterior to the
inspection of individual units) it is possible to determine the prob-
ability with which the true proportion exceeds any specified 
proportion.

This approach provides a probability statement about the true pro-
portion. This is in contrast to the inference obtainable from an ap-
proach which provides a confidence interval for the true proportion.
It is no accident that the word probability is not used to describe this
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interval. A confidence interval derives its validity as a method of in-
ference on a long-run frequency interpretation of probability (1). For
example, consider specifically, the 95% confidence interval for a
proportion. The probability with which this interval contains the true
proportion is not known. However, suppose the experiment which
generated the 95% confidence interval is repeated many times (un-
der identical conditions, a theoretical stipulation, which it is impos-
sible to fullfil in practice) and on each of these occasions a 95% con-
fidence interval for the true proportion is calculated. Then, it can be
said that 95% of these (95%) confidence intervals will contain the
true proportion. This does not provide information concerning the
one 95% confidence interval which has been calculated. It is not
known whether it does or does not contain the true proportion, and it
is not even possible to determine the probability with which it con-
tains the true proportion.

The method which uses the scientist’s prior beliefs and enables
a probability statement to be made is known as the Bayesian
method, after the Rev. Thomas Bayes (2–4). The procedure by
which prior beliefs and a function of the observations may be com-
bined to provide posterior beliefs is known as Bayes’ Theorem.
The method which relies on the idealized long-run frequency for its
validity is known as the frequentist method.

It is the purpose of this paper to compare the results obtained
from the Bayesian and frequentist approaches to assessing uncer-
tainty, to clarify the assumptions made in the two approaches, to
contrast the clarity of the inferences obtainable from the Bayesian
approach with the lack of clarity associated with the frequentist ap-
proach, and to illustrate the greater flexibility of the Bayesian ap-
proach with the inflexibility of the frequentist approach. The meth-
ods are illustrated with reference to sampling from consignments of
drugs. However, they apply equally well to sampling in other
forensic contexts, for example, glass (5) and pornographic images.

Frequentist procedures are described in (6) for choosing a sam-
ple size from a consignment. Distinction is drawn between an ap-
proach based on the binomial distribution and an approach based
on the hypergeometric distribution. It is argued in (6) that the for-
mer can be used for large consignments in which the sampling of
units may be taken to be sampling with replacement. For small
samples, the sampling units may be taken to be sampling without
replacement and the hypergeometric approach is used. The
Bayesian approach also has different methods for analyzing large
and small samples.

As reported in (7), various methods for selecting the size of a
random sample from a consignment have been accepted by the
U.S. courts. An approach based on the hypergeometric distribution
is proposed in (7). A summary of different procedures used in 27
laboratories around the world in given in (8). These procedures in-
clude methods based on the square root of the consignment size, a
percentage of the consignment size, and a fixed number of units re-
gardless of the consignment size, as well as the hypergeometric dis-
tribution. The authors in (8) propose the formula.

m 5 20 1 10%(N 2 20) (for N . 20)

where m is the sample size and N is the consignment size. As well
as being simple to implement, this approach, as the authors rightly
claim, provides the opportunity to discover heterogeneous popula-
tions before the analysis is completed. According to (7), it should be
sufficient to demonstrate with “good probability that most of the ex-
hibit contains the controlled substance.” Yet, summaries are given
as confidence limits using a frequentist approach (as described
above) and not in probabilistic terms. For example, from (7), a state-
ment of the form that “at the 95% confidence level, 90% or more of
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the packages in an exhibit contain the substance” is suggested as be-
ing sufficient proof in cases of drug handling. The procedures to be
described here provide summaries in probabilistic terms.

In general, an answer is provided to the question:

“How big a sample should be taken for it to be said that there
is a 100 p% probability that the proportion of units in the con-
signment which contain drugs is greater than 100u0%?”

For an example of a particular instance, an answer is provided to
the question:

“How big a sample should be taken for it to be said that there
is a 95% probability that the proportion of units in the con-
signment which contain drugs is greater than 50%?”

Here, the value 0.95 has been substituted for p and the value 0.5 has
been substituted for u0. This requirement may not seem very strin-
gent but may be sufficient to satisfy certain legal requirements.

A Comparison of Two Methods of Measuring Uncertainty

Before comparing two methods of estimating the sample size
necessary to make a statement about the proportion of units in a
consignment which contain drugs, it is useful to consider further
the two methods of measuring uncertainty on which these two
methods are based, and which were outlined in the Introduction.

The Frequentist Method—This assumes that the proportion u of
the consignment which contains drugs is unknown but fixed. The
data, that is the number of units in the sample which contain drugs,
are variable. A so-called confidence interval or level is calculated.
The name confidence is used since no probability can be attached
to the uncertain event that the interval contains u.

The frequentist approach derives its name from the relative fre-
quency definition of probability. The probability that a particular
event, A say, occurs is defined as the relative frequency of the num-
ber of occurrences of event A compared with the total number of
occurrences of all possible events, over a long run of observations,
conducted under identical conditions.

For example, consider tossing a coin n times. It is not known if the
coin is fair and the outcomes of the n tosses are to be used to deter-
mine the probability of a head occurring on an individual toss. There
are two possible outcomes, heads (H ) and tails (T ). Let n(H ) be the
number of H and n(T ) be the number of T such that n(H ) 1 n(T ) 5
n. Then the probability of tossing a head on an individual toss of the
coin is defined as the limit as n → ` of the fraction n(H )/n.

The validity of the frequentist approach, however, relies on a be-
lief in the long-run repetition of trials under identical conditions.
This is an idealized situation, seldom, if ever, realized in practice.

The Bayesian Method: Subjective Probability—The Bayesian ap-
proach represents the uncertainty concerning knowledge of u (the
proportion of interest) with a probability distribution. The data are
taken as fixed, in contrast to the frequentist method. A sample of a
particular size m from a consignment has been taken and the num-
ber of units z which contain drugs noted. These data are considered
fixed. There is no consideration for the long-run repetition of trials
under identical conditions. Data which may have been observed but
have not are not allowed to affect the analysis. In the frequentist
method the probability of z given m and u is a function represented
by the binomial distribution. In the Bayesian method, the same func-
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tion is expressed as a function of u, known as the likelihood func-
tion. It has the same mathematical form as the binomial distribution
but takes the data as fixed and expresses the form as a function of u:

L (u | m, z) 5 ( z
m) uz(1 2 u)m2z (0 , u , 1). (1)

Uncertainty about u can be expressed as a probability distribution.
Probability intervals may be determined for u with a much clearer
interpretation than with confidence intervals.

Choice of Sample Size

Large Consignments—A large consignment will be taken to be
one which is sufficiently large that sampling is effectively with re-
placement. This can be as small as 50, though in many cases it will
be of the order of many thousands.

A consignment of drugs containing N units will be considered as
a random sample from some super-population of units which contain
drugs. Let u (0 , u , 1) be the proportion of units in the super-pop-
ulation which contain drugs. For consignment sizes of the order of
several thousand all realistic values of u will represent an exact num-
ber of units. For small sample sizes less than 50, u can be considered
as a nuisance parameter (5 and Appendix 1) and integrated out of the
calculation leaving a probability distribution for the unknown num-
ber of units in the consignment which contain drugs as a function of
known values. For intermediate calculations, u can be treated as a
continuous value in the interval (0 , u , 1), without any detriment
to the inference. As before, let m be the number of units sampled and
let z be the number which are found to contain drugs.

Frequentist Approaches to the Estimation of u—The sample pro-
portion p 5 z /m is an unbiased estimate of u. The variance of p is
given by (9)

}
u(1

m
2 u)
} 1}NN 2

2
m
1

}2.

The factor (N 2 m)/(N 2 1) is known as the finite population cor-
rection (fpc). Provided that the sampling fraction m /N is low, the size
of the population has no direct effect on the precision of the estimate
of u. For example, if u is the same in the two populations, a sample
of 500 from a population of 200,000 gives almost as precise an esti-
mate of the population proportion as a sample of 500 from a popula-
tion of 10,000. The estimated standard deviation of u in the second
case is 0.98 times the estimated standard deviation in the first case.

Consider the following example. To simplify matters, the fpc is
ignored and the sample proportion p is assumed to be normally dis-
tributed. Assume that u is thought to be about 75%. It is stipulated
that a sample size m is to be taken to estimate u to within 25%, i.e.,
in the interval (0.50, 1.00) with 95% confidence. (This may be
thought a very wide interval but it is consistent with the form of
question posed at the end of the Introduction that a sample size be
determined such that it can be said that, if all of the sample are
found to contain drugs, then there is a 95% probability that u is
greater than 50%.) The criterion for the sample size is that there
should be a confidence of 0.95 that the sample proportion p lies in
the interval 0.75 6 0.25. From known results of the normal distri-
bution, this implies that two standard deviations equal 0.25. The
standard deviation of p, ignoring the fpc, is

!}
u§(1§m

2§ u§)
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(see also equation (5) of (5)). Setting two standard deviations equal
to 0.25, and solving for m, gives the following expression for m:

m 5 }
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0

(1

.2

2

52

u)
}.

When u 5 0.75, m 5 12. Thus a sample of size 12 is sufficient to
estimate u to be greater than 0.5 with confidence 0.95. Similar cal-
culations are reported in (6), where one standard deviation is set
equal to 0.1 and the sample size is chosen to maintain this value of
the standard deviation for various values of N and estimated values
of u. Later, it will be shown using Bayesian techniques, that, if all the
inspected samples are found to contain drugs, the required sample
size to enable one to say that u . 0.5 with probability 0.95, is 4.

An alternative approach, based on the binomial distribution, is
discussed in (5). Consider a specific value u0 of u. The forensic sci-
entist wishes to show that u . u0. Another probability, a, is se-
lected as the probability that the null hypothesis u . u0 is rejected
based on an inspection of a sample of units from the consignment.
It is also assumed that the inspection of the sample reveals that all
the units in the sample contain drugs. An example when not all the
units which are examined contain drugs is given in (6).

This analysis may be considered as a hypothesis test. The null
hypothesis is that u . u0; the alternative is that u , u0. As stated
above, it is assumed that m 5 z. Standard statistical theory shows
that the null hypothesis is rejected in favor of the alternative if u0

m

# a. The probability a is the probability that the hypothesis u . u0

is rejected. The complementary probability (1 2 a) is the proba-
bility that the hypothesis u . u0 is not rejected. Failure to reject the
null hypothesis is not the same as saying it is true. There will be
many occasions in which data are such that the null hypothesis is
not rejected but for which the data provide stronger support for an
alternative hypothesis. The probability that the hypothesis u . u0

is not rejected is not the same as the probability that u . u0. For this
reason the word confidence is used instead of probability when re-
ferring to the first situation. It is said that one has 100(1 2 a)%
confidence that u . u0.

Table 1, a subset of Table 1 of (6) shows the values of (1 2 a)
for various values of u0 and m.

The meaning of the results in Table 1 can be illustrated by con-
sideration of u0 5 0.7. Assume u0 5 0.7. Five units of the con-
signment are examined and all are found to contain drugs. The
probability of this happening, when u0 5 0.7, is 0.75 which equals
0.17. Thus, there is 83% confidence that u, the true proportion of
drugs in the consignment, is greater than 0.7. Similarly, there is
67% confidence that u is greater than 0.8 and 41% confidence that
u is greater than 0.9. However, these statements are not probability
statements about the value of u. The statement concerning the first
result, written more fully, is as follows.

Suppose u , 0.7. The probability that, when 5 units are ex-
amined, all are found to contain drugs is less than 0.17.

TABLE 1—Values of (1 2 a) for various values of u0 and m, from (6).

u0

m 0.7 0.8 0.9

5 0.83 0.67 0.41
10 0.97 0.89 0.65
15 0.99 0.96 0.79



What is taken to be known in the probability calculation is that u ,
0.7. The probability statement is concerned with the probability
that all the examined units contain drugs, if u , 0.7. The data are
variable, u is fixed.

This is the transpose of what is required. In practice, it is known
that a sample has been examined and all of the units in the sample
have been found to contain drugs. It is then the probability that u ,
0.7, say, which is of interest.

In the first case, illustrated in Table 1, probability statements of
the form

Pr(z 5 m | m units examined, u 5 0.7)

are considered. In the transpose, probability statements of the form

Pr(u , 0.7 | m units examined and z 5 m)

are considered. In both cases, z is the number of units examined
which are found to contain drugs. It is one of the main purposes of
this paper to demonstrate that this second approach provides a
more intuitively satisfactory method of determining the sample
size.

A Bayesian Method for the Estimation of u—In order to make
probability statements about u, it is necessary to have a probability
distribution for u, to represent the variability in u. This variability
may simply be uncertainty in one’s knowledge of the exact value
of u, uncertainty which may arise because the consignment is con-
sidered as a random sample from a super-population. However, the
Bayesian philosophy permits one to represent this uncertainty as a
probability distribution. The most common distribution for u is the
so-called beta distribution (10). Its use in another forensic context,
that of sampling glass fragments, is described in (5).

A continuous random variable u has a beta distribution with pa-
rameters (a, b, a . 0, b . 0), denoted Beta(a, b), if its probabil-
ity density function ƒ(u | a, b) is

ƒ(u | a, b) 5 ua21(1 2 u)b21/B (a, b), 0 , u , 1, (2)

where

B(a, b) 5 }
G

G

(

(

a

a)

1

G(b

b

)

)
}

and

G(z) 5 #
`

0
t z21e2tdt

is the gamma function. Integer and half-integer values of the
gamma function are found from the recursive relation G(x 1 1) 5
x G(x) and the values G(1) 5 1 and G(1/2) 5 Ïpw . 1.7725.

Note that the beta distribution models characteristics which only
takes values in the range (0,1), which is particularly appropriate for
proportions. Graphs of the beta distributions with parameters (3,2),
(3,1) and (10,1) are shown in Fig. 1 (a), (b), and (c). The graph of
Beta (3,1) is proportional to u2. This reflects belief that the most
likely outcome is that all units in the consignment contain drugs
with a belief that reduces as a quadratic as u decreases from 1 to 0.
The graph of Beta (10,1) is proportional to u9. The graph of Beta
(3,2) has a mode at u 5 2/3, reflecting a belief that it is quite likely
that there are units in the consignment which do not contain drugs.

The beta distribution is technically convenient in the context of
sampling from a discrete consignment because it is a so-called con-
jugate prior distribution for the binomial distribution. It combines
with the binomial distribution to provide a posterior distribution
which is also a beta distribution. See Appendix 1 for further details.
Thus, if m units are examined and z are found to contain drugs then
the probability density function which combines this information
with the prior distribution is given by

ƒ(u | z, m, a, b) 5 uz1a21(1 2 u)m2z1b21/B(z 1 a, m 2 z 1 b),

0 , u , 1,

denoted Be(z 1 a, m 2 z 1 b). In the particular case where z 5 m,
the density function is given by

ƒ(u | m, m, a, b) 5 um1a21(1 2 u)b21/B(m 1 a, b),

0 , u , 1.
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FIG. 1—Probability density functions from (2) for the beta distribution with parameters (a) a 5 3, b 5 2, (b) a 5 3, b 5 1, (c) a 5 10, b 5 1.

A
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There is an interesting comparison with the frequentist formula-
tion of the problem, when a limiting case is considered. Let a → 0
and let b 5 1. This limiting case gives rise to an improper prior dis-
tribution, so-called because it is not a probability density function.
However, the analysis is justified in that the posterior distribution
is a probability density function,

ƒ(u | m, m, a, b) → um21/B(m, 1) 5 mum21.

Thus,

Pr (u , u0 | m, m, a, b) → Eu0

0
mum21 du 5 u0

m,

the same expression as used in the frequentist case but with a much

more coherent interpretation, since it is now a probability statement
about u. For example, if m 5 5,

Pr (u , 0.7 | 5, 5, a, b) → 0.75 5 0.17,

the same numerical value as before.
Another commonly used prior distribution is one in which a 5

b 5 1. Then

ƒ(u | 1, 1) 5 1 0 , u , 1.

This distribution is the so-called uniform distribution and is often
used to represent maximum uncertainty about u. Another represen-
tation of uncertainty is the case where a 5 b 5 1/2 where greater
belief is placed at the ends of the range, in favor of all items or no

FIG. 1—(Continued)

B
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items containing drugs, than in the middle. Then

ƒ(u | 0.5, 0.5) 5 p21 u21/2(1 2 u)21/2.

In practice, a criterion has to be specified in order that the sam-
ple size may be determined. Consider the criterion from the Intro-
duction that the scientist wishes to be 95% certain that 50% or more
of the consignment contains drugs when all units sampled contain
drugs. Then the criterion may be written mathematically as

Pr (u . 0.5 | m, m, a, b) 5 0.95

or

E1

0.5
um1a21(1 2 u)b21du/B(m 1 a, b) 5 0.95. (3)

The general question in which p and u0 are specified at the end
of the Introduction may be answered by finding the value of m
which solves the equation

E1

u 0

um1a21(1 2 u)b21 du/B(m 1 a, b) 5 p. (4)

Such integrals are easy to evaluate using standard statistical
packages (e.g., SPLUS (11)) given values for m, a and b. It is then
a simple matter to substitute specified values for u0 and p and given
values for a and b and then select m by trial and error to solve (4).

For example: Consider the following pairs of values for a and b:
(1,1), (0.5,0.5), and (0.065,0.935) (the last pair suggested by Pro-
fessor T. Leonard, personal communication). For the first two pairs
there is a prior probability of 0.5 that u . 0.5; for the third pair there
is a prior probability of 0.05 that u . 0.5. This third choice was
made since 0.05 is the complement of 0.95. Table 2 shows the re-
sults for (3) for various values of m.

This gives the remarkable result that, for large consignments, of
whatever size, the scientist need only examine 4 units, in the first
instance. If all are found to contain drugs, there is a 95% probabil-
ity that 50% of the consignment contains drugs. Compare this with
the result derived from a frequentist approach using a normal ap-
proximation to the binomial distribution which gave a value of 12
for the sample size. These sample sizes are not large. However,
there is not very much information gained about the exact value of
u. It is only determined that there is probability of 0.95 that u . 0.5.
This is a wide interval (from 0.5 to 1) within which the true pro-
portion may lie.

Figures 2 and 3 illustrate how varying prior beliefs have little in-
fluence on the conclusions once some data have been observed.
Figure 2 shows the prior probability that u . u0 for 0 , u0 , 1, for
the values of (a, b) given in Table 2, decreasing from a value of 1
when u0 5 0 to a value of 0 when u0 5 1. There are considerable
differences in the curves. Figure 3 shows the corresponding poste-
rior probabilities for u . u0 given four units have been observed
and all have been found to contain drugs, with the values for u0 5
0.5 emphasized. There is very little difference in these curves.
There may be concerns that it is very difficult for a scientist to for-
malize his prior beliefs. However, if a and b are small, large dif-
ferences in the probabilities associated with the prior beliefs will
not lead to large differences in the conclusions.

The methodology can be extended to allow for units which do not
contain drugs. For example, if one of the original four units in-
spected is found not to contain drugs then three more should be in-
spected. If they all contain drugs, then it can be shown that the prob-
ability that u . 0.5, given that six out of seven contain drugs, is 0.96.
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TABLE 2—The probability that the proportion of drugs in a large
consignment is greater than 50% for various sample sizes m and prior

parameters a and b.

m
a b 2 3 4 5

1 1 0.94 0.97
0.5 0.5 0.92 0.97 0.985 0.993
0.065 0.935 0.90 0.95 0.97

FIG. 2—The prior 1-F (u0 ) probability that the proportion u of units in a consignment which contain drugs is greater than u0, for various choices of a
and b: a 5 b 5 1(– ? – ? ), a 5 b 5 0.5(– – –), a 5 0.065, b 5 0.935(???).
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The dependency of the sample size on the values of p and u0 is
illustrated in Table 3. The prior parameters a and b are set equal to
1. Consider p 5 0.90, 0.95 and 0.99 and consider values of u 5 0.5,
0.6, 0.7, 0.8, 0.9, 0.95, 0.99. The sample size m required to be
100p% certain that u is greater than the specified value is then
given by the value of m which satisfies the equation

Pr(u . u0 | m, m, 1, 1) 5 1 2 u0
m11 5 p,

a special case of (4). The value of m is thus given by the smallest
integer greater than

[log(1 2 p) / log(u0)] 2 1.

Obviously, when considering the results in Table 3, the consign-
ment size has to be taken into account in order that the sample size
may be thought small with respect to the size of the consignment.
Thus, for the last row in particular to be useful, the size of the con-
signment from which the sample is to be taken will have to be of
the order of several tens of thousands.

An alternative representation, given in Table 4, considers the
value of p which is obtained for various values of u0 and for given
sample sizes m, when the entire sample of size m is found to con-
tain drugs. The first row of Table 2 is a special case of Table 4.

There may be situations in which different choices of a and b
may be wanted. The outcome for small samples of some different
choices is shown in Table 8. It may be the scientist has some sub-
stantial prior beliefs about the proportion of the consignment which
may contain drugs. These beliefs may arise from previous experi-
ences of similar consignments (from what may be considered to be
the same super-population), for example. In such cases, use can be
made of various properties of the beta distribution to assist the sci-
entist in choosing values for a and b. The mean of the beta distri-
bution is a/(a 1 b) and the variance is ab/(a 1 b)2(a 1 b 1 1).
Thus, a prior belief of the proportion of the consignment which
contains drugs would set that proportion equal to the mean of the
distribution and a belief about how precise that belief was, would
provide a value for the variance. Alternatively, if it was felt that b

FIG. 3—The posterior probability 1-F (u0) that the proportion u of units in a consignment which contain drugs is greater than u0, after inspection of m
5 4 units has shown them all to contain drugs, for various choices of a and b: a 5 b 5 1(– ? – ? ), a 5 b 5 0.5(– – –), a 5 0.065, b 5 0.935(???). The
solid lines show the probabilities that u . 0.5 for the various choices of a and b (from Table 2, with m 5 4, the probabilities are 0.97, 0.985 and 0.95, re-
spectively, for (a, b) 5 (1, 1), (0.5, 0.5) and (0.065, 0.935)).

TABLE 3—The sample size required to be 100p% certain that the
proportion of units in the consignment which contain drugs are greater
than u0, when all the units inspected are found to contain drugs. The

prior parameters a 5 b 5 1.

p
u0 0.90 0.95 0.99

0.5 3 4 6
0.6 4 5 9
0.7 6 8 12
0.8 10 13 20
0.9 21 28 43
0.95 44 58 89
0.99 229 298 458

TABLE 4—The probability p that the proportion of a large consignment
which contains drugs is greater than u0 when a sample of size m is

inspected and the entire sample is found to contain drugs (a 5 b 5 1.)

m
u0 3 4 5 50 100 150

0.5 0.94 0.97 0.98
0.6 0.87 0.92 0.95
0.7 0.76 0.83 0.88
0.8 0.59 0.67 0.74
0.9 0.34 0.41 0.47 0.995
0.95 0.19 0.23 0.26 0.927
0.99 0.04 0.05 0.06 0.401 0.638 0.781



could be set equal to 1, so that the shape of the probability density
function is similar to those in Fig. 1(b) and 1(c) (i.e., monotonic in-
creasing with respect to u), and that there was a prior belief about a
lower bound for the proportion, say that

Pr(Proportion . u0 | a, b) 5 p

then use could be made of the result that

a 5 log(1 2 p) / log(u0).

Small Consignments—Suppose now that the consignment size N
is small. A sample of m units from the consignment is examined
and z(# m) units are found to contain drugs. Denote the number, N
2 m, of units not examined by n, so that m 1 n 5 N.

A Frequentist Approach—Consider a frequentist approach based
on the hypergeometric distribution (6). Let R 5 Z 1 Y be the total
number of units in the consignment which contain drugs, where Z
is the number of units in the sample of size m and Y is the number
of units in the remainder which contain drugs. Then the distribution
of Z is hypergeometric with

Pr (Z 5 z) 5 }
(z

R)

(

(
N
m

m

)
2z

N2R)
}, z 5 0, 1, . . ., min(R, m).

To satisfy a given confidence level (1 2 a), the maximum value
of R is needed, (6), such that

∑
max (m2z, N2R)

x 5 min (o, m2R)

}
(m2x

R

(

)
N
m

(N

)

2R
x )

}# a.

When m 5 z this reduces to

}
R
N

!
!
(
(
N
R

2

2

m
m

)
)
!
!

} # a.

Table 5, part of Table 3 in (6), shows the confidence levels when
m 5 z and u 5 0.7 for N 5 10, 20 and 30 (and hence R 5 7, 14, 21)
and for m 5 5, 10, 15.

Consider the value 0.92 when N 5 10 and m 5 5. This is the
probability that, if u 5 0.7, 5 units in a consignment of size 10,
when examined, will be found to all contain drugs. Again this as-
sumes u to be known to be 0.7 and gives a value for the probability
that m 5 z. This is translated in frequentist terms to read that “one
is 92% confident that, when 5 units in a population of 10 are ex-
amined and all are found to contain drugs, u . 0.7.”

The Beta-Binomial Distribution—The interpretation in the pre-
vious section is not so clear as that obtained from the Bayesian
method which uses a so-called beta-binomial distribution (10). The
beta-binomial distribution provides a probability statement about
the number of units in the consignment which contain drugs.

As before, let u (0 , u , 1) be the proportion of units in the su-
per-population which contain drugs. The probability distribution of
z, given m and u, may be taken to be binomial. For each unit, inde-
pendently of the others in the consignment, the probability it con-
tains drugs is taken to be equal to u. The posterior distribution of u
is another beta distribution with parameters (a 1 z) and (b 1 m 2
z) (see Appendix 1).

Since the consignment size is small, a better representation of the
variability of the number of unexamined units in the consignment
which contain drugs is obtained by considering a probability distri-
bution for this number, Y, explicitly. There are n units in the re-
mainder of the consignment (m 1 n 5 N ) which have not been ex-
amined. Then Y (unknown and # n) is the number of units in this
remainder which contain drugs. Given u, the distribution of (Y | n,
u), like that of (Z | m, u), is binomial. However, u has a beta distri-
bution and the distribution of (Y | n, u) and the distribution of (u |
m, z, a, b) can be combined to give what is known as a Bayesian
predictive distribution for (Y | m, n, z, a, b), known as a beta-bino-
mial distribution (10).

Pr(Y 5 y | m, n, z, a, b)

5 ,

(y 5 0, 1, . . ., n), (5)

(see Appendix 1).
From this distribution, inferences can be made about Y, such as

probability intervals or lower bounds for Y. Note the flexibility
given by the ability to vary a and b to incorporate prior beliefs
about the proportion of units in the consignment which contain
drugs. Also, for integer values of a and b, (5) reduces to a function
of factorials.

Comparison of Beta-Binomial and Hypergeometric Ap-
proaches—For large samples, it has been shown that in a limiting
case, the beta distribution and the binomial distribution give the
same numerical answers, though with different interpretations. A
corresponding comparison can be made with the beta-binomial and
hypergeometric distributions.

Suppose m units are examined and z are found to contain drugs;
n units are not examined. Let y be the number of unexamined units
which contain drugs and let r 5 z 1 y. Then y is unknown. It can
be shown (see Appendix 2) that

Pr (R 5 r | m, n, z) 5}
(m

(m
1

1

n 1

1)(
1
z
m

)
)
(
(

z

y
n

1

)

y
m1n)

} (6)

5 Pr (Y 5 y | m, n, z, 1, 1),

the beta-binomial (5) distribution with a 5 b 5 1, where r can take
values z, . . ., n 1 z, and y can take values 0, . . ., n. This result de-
pends on a theorem known as Vandermonde’s theorem (12,13).
This is not a new result. Todhunter (14) credits Condorcet in 1785
and Prevost and Lhuilier in 1799 with recognizing it. Todhunter
(14) comments that “the coincidence of the results obtained on the
two different hypotheses is remarkable.” This result has also been
used more recently in forensic science in the context of glass sam-
pling (5).

Use of the Beta-Binomial Distribution—As an example, con-
sider a consignment of size N 5 10, where five units are inspected
and all five are found to contain drugs (m 5 z 5 5). For the pro-

G(m 1 a 1 b)(y
n)G(y 1 z 1 a)G(m 1 n 2 z 2 y 1 b)

}}}}}}
G(z 1 a)G(m 2 z 1 b)G(m 1 n 1 a 1 b)
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TABLE 5—Confidence levels when the true proportion of drugs in the
consignment is 0.7, for consignments of size N and samples of size m.

N
m 10 20 30

5 0.92 0.86 0.847
10 — 0.98 0.982
15 — . 1.0 0.998
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portion of units in the consignment which contain drugs to be at
least 0.7 (u $ 0.7), it is necessary for the number of units Y in the
five units not inspected to be at least 2(Y $ 2). The beta-binomial
probability, with a uniform prior a 5 b 5 1, is given by

Pr (Y $ 2 | 5, 5, 5, 1, 1,) 5 ∑
5

y52
}
1

6

1

(

(

5
5)

1

(
0

51

y
5

y

)

)
} 5 0.985,

the summation of terms in (6), with m 5 n 5 z 5 5 and for y tak-
ing values from 2 to 5.

The hypergeometric distribution has the interpretation that if m
5 z 5 5, one is 92% confident that u . 0.7. The beta-binomial ap-
proach enables one to assign a probability of 0.985 to the event that
u . 0.7.

As with large consignments, values for a and b may be chosen
subjectively to represent the scientist’s prior beliefs before inspec-
tion about the proportion of the units in the consignment (as a ran-
dom sample from the super-population) which contain drugs.

When considering large consignments, the criterion was stipu-
lated that a sample size was to be chosen such that if all the units
contained drugs then there was to be a probability of 0.95 that the
proportion of units in the whole consignment which contains drugs
was greater than 0.5. This criterion was used to investigate sample
sizes required for small consignments in which N # 50. The results
are shown in Table 6, where a 5 b 5 1.

Thus, for consignments no greater than 50 in size, samples of
size 3 need to be examined. For samples greater than 50, theory re-
lating to large consignments may be used and samples of size 4
may be used. For convenience, samples of size 4 can be used for all
sample sizes.

Results can also be obtained for proportions of N different from
50%. For example, in Table 7, R $ 0.8N is chosen. The probabil-

ity that R $ 0.8N is given for sample sizes 1, 2, 3 and 4 in which all
units contain drugs (a 5 b 5 1).

The results in Tables 6 and 7 are for the special circumstances in
which a 5 b 5 1 and all units inspected contain drugs. More gen-
eral results can be obtained. The problem is then to choose m such
that, given n, a, and b, (and possible values for z, consequential on
the choice of m and the outcome of the inspection), a value for y can
be determined to satisfy some probabilistic criterion, e.g., the value
y0 such that Pr(Y $ y0 | m, n, z, a, b) 5 p. Some results are given
in Table 8 for p 5 0.9, where the consignment size N is taken to be
30. Note from the last two rows that if one or two of the six in-
spected units do not contain drugs then the number of units in the
remainder of the consignment which can be said, with probability
0.9, to contain drugs drops from 17 to 12 to 9. Note also that even
if 16 units (out of 30) are inspected and all are found to contain
drugs, then it can only be said, with probability 0.9, that 12 of the
remaining 14 contain drugs (and this is so even with a 5 4, b 5 1).

Summary

The following summary of the main results of the paper is
phrased in the context of inspecting a consignment of drugs. How-
ever, the ideas expressed in the paper are just as applicable to other
forensic contexts, such as the inspection of computer disks for
pornographic images. In such a situation sampling may be benefi-
cial as it exposes the investigators to as little stress as possible.

For small consignments, the beta-binomial distribution provides
a probability distribution for Y and hence for the total number of
units R (and hence the proportion of units) in the consignment
which contain drugs. For large consignments, the beta distribution
is used. These probability distributions can then be used to make in-
ferences for the number of units in a consignment which contain
drugs. There are no problems of interpretation as the uncertainty

TABLE 6—For consignments of size N in which R(# N and unknown)
units contain drugs, the probability that R $ N/2 is given for various

sample sizes m, in which all units in the sample contain drugs.
(a 5 b 5 1.)

m
N 1 2 3 4

10 0.818 0.939 0.984 0.998
20 0.786 0.910 0.965 0.988
30 0.774 0.899 0.957 0.982
40 0.768 0.893 0.952 0.979
50 0.744 0.890 0.949 0.972

TABLE 7—For consignments of size N in which R (# N and unknown)
units contain drugs, the probability that R $ 0.8N is given for various

sample sizes m in which all units contain drugs. (a 5 b 5 1.)

m
N 0.8N 1 2 3 4

10 8 0.491 0.661 0.788 0.879
20 16 0.429 0.579 0.696 0.785
30 24 0.406 0.550 0.662 0.750
40 32 0.395 0.535 0.645 0.731
50 40 0.388 0.526 0.634 0.720

TABLE 8—Determination of the sample size required from a
consignment of 30 units, to satisfy certain criteria. Parameters a and b
are representative of prior beliefs about the proportion of units which
contain drugs. The number of units inspected equals m, the number of
those which contain drugs is z. The number of units not inspected is n

(equals 30 2 m). y0 is the largest number of those units not inspected for
which it can be said that ‘the probability is 0.9 or greater that y0 or

more units contain drugs’. Pr( Y 5 n) is the probability that all the units
not inspected contain drugs.

a b m z n y0 Pr(Y 5 n)

1 1 4 4 26 16 0.16
2 1 4 4 26 17 0.19
3 1 4 4 26 18 0.21
4 1 4 4 26 19 0.24
5 1 4 4 26 20 0.26
6 1 4 4 26 20 0.28
4 2 4 4 26 16 0.06
6 2 4 4 26 17 0.08

10 2 4 4 26 19 0.13
0.5 0.5 4 4 26 19 0.38
1 1 6 6 24 17 0.23
1 1 8 8 22 16 0.29
1 1 10 10 20 16 0.35
1 1 12 12 18 15 0.42
1 1 14 14 16 13 0.48
1 1 16 16 14 12 0.55
4 1 16 16 14 12 0.59

10 1 4 4 26 22 0.35
1 1 6 5 24 12 0.05
1 1 6 4 24 9 0.01



concerning the number of units in the consignment which contain
drugs may be expressed by a probability distribution. The cost,
however, lies in the choice of the parameters a and b. This choice
is made subjectively. If a small change in their values leads to a
large change in the outcomes then considerable care has to be ex-
ercised in that choice so that it may be fully justified. However, if
this were the case, this would be indicative that little information
had been gained from inspection of the consignment. Care would
be needed in the interpretation, regardless of the statistical input to
the investigation.

For large consignments, once choices of a, b, u0 and p have been
made, it is a simple matter to determine the value of m which pro-
vides a solution for (4).

For small consignments the inferences which can be made are il-
lustrated in Tables 6 and 7 (for a 5 b 5 1) and in Table 8 for other
values of a and b. The general formula is given by (5).

Finally, consideration has to be given to the effect of the discov-
ery that some units in the inspected sample do not contain drugs.
Such a discovery can have quite an effect on Pr(Y 5 n) and on y0

as illustrated in Table 8. Further units can be inspected in a sequen-
tial process. An example for large consignments has been given.

Appendix 1

Derivation of the Beta-Binomial Distribution—A sample of size
m is taken from a consignment which contains m 1 n units (m 1 n
5 N ). Let u be the proportion of the total number of units in the
consignment which contain drugs and let Z be the number of units
in the sample of size m which contain drugs. Then

Pr(Z 5 z | m, u) 5 1 2 uz(1 2 u)m2z, z 5 0, 1, . . ., m,

and

1 2 5 }
z!(m

m

2

!

z)!
}

is the binomial coefficient, where the ! notation denotes factorials
(e.g., for integer x, x! 5 x(x 2 1)(x 2 2). . .1) and the distribution
for Z is a binomial distribution.

The binomial distribution, written as a function of u, is the like-
lihood function (1) which can then be combined with a prior beta
distribution (2) for u to give a posterior beta distribution for u. This
follows from Bayes’ Theorem which states that

ƒ(u | z, m, a, b) ~ Pr(Z 5 z | u, m) 3 ƒ(u | a, b).

The posterior beta distribution for (u | z, m, a, b) can be shown to be

ƒ(u | z, m, a, b) 5 uz1a21(1 2 u)m2z1b21/B(z 1 a, m 2 z 1 b),

0 , u , 1.

However, for small consignments, the most interesting quantity is
the number Y of units in the remaining n unexamined units which
contain drugs. The distribution of (Y | n, u) is binomial. When this
distribution is combined with the posterior beta distribution for u the
resulting distribution is known as a beta-binomial distribution (10).

Pr(Y 5 y | m, n, z, a, b) 5

,

(y 5 0,1, . . ., n), expression (5).

G(m 1 a 1 b)(y
n)G(y 1 z 1 a)G(m 1 n 2 z 2 y 1 b)

}}}}}}
G(z 1 a)G(m 2 z 1 b)G(m 1 n 1 a 1 b)

m
z

m
z

Appendix 2

Similarity of Results from a Beta-Binomial Distribution with a
5 b 5 1 and a Hypergeometric Distribution.

First, define

1 2 to be equal to .

This in turn is equal to

5 (21)k 1 2,

(12).
Then, by comparing the coefficients of t k in the two sides of the

equation

(1 1 t)2a(1 1 t)2b 5 (1 1 t)2a2b

it can be shown that

∑
k

j50
1 21 2 5 1 2,

(13). With a suitable change of notation this result can be written as

∑
n1z

k5z
1 2 1 2 5 1 2.

Consider the beta-binomial distribution (5) with a 5 b 5 1.
Then it can be shown that

Pr(Y 5 y | m, n, z, 1, 1) 5 , (7)

for y 5 0,1,2, . . ., n.
Let R be the total number of units which contain drugs in a con-

signment of size N. Thus R takes a value in {0,1,2, . . ., N}. A uni-
form prior distribution for R assigns equal probability 1/(N 1 1) to
each of these (N 1 1) integers.

Pr(R 5 r | N) 5 1/(N 1 1).

The distribution of Z, the number of inspected units which con-
tain drugs, given m, n and R, is hypergeometric. For ease of nota-
tion, let N 5 m 1 n and R 5 Z 1 Y. The distribution of Y, given m,
n and z and given the uniform prior for R can be written as

Pr(Y 5 y | m, n, z) 5 Pr(Y 1 z 5 r | m, n, z)

5

5

5

5 

5 .

for y 5 0,1,2, ..., n, which equals the beta-binomial probability (7).
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Erratum/Correction of Aitken CGG, Sampling—How Big a Sample? J Forensic Sci 1999 Jul;44(4):750–60.
On page 750, in the second column, second paragraph.
An alternative approach, based on the binomial distribution, is discussed in (6). Consider a specific value . . . . .

should read:
An alternative approach, based on the binomial distribution, is discussed in (5). Consider a specific value . . . . .
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